Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1392637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654899

RESUMO

Botrytis cinerea is the causal agent of gray mold, which affects a wide variety of plant species. Chemical agents have been used to prevent the disease caused by this pathogenic fungus. However, their toxicity and reduced efficacy have encouraged the development of new biological control alternatives. Recent studies have shown that bacteria isolated from amphibian skin display antifungal activity against plant pathogens. However, the mechanisms by which these bacteria act to reduce the effects of B. cinerea are still unclear. From a diverse collection of amphibian skin bacteria, three proved effective in inhibiting the development of B. cinerea under in vitro conditions. Additionally, the individual application of each bacterium on the model plant Arabidopsis thaliana, Solanum lycopersicum and post-harvest blueberries significantly reduced the disease caused by B. cinerea. To understand the effect of bacteria on the host plant, we analyzed the transcriptomic profile of A. thaliana in the presence of the bacterium C32I and the fungus B. cinerea, revealing transcriptional regulation of defense-related hormonal pathways. Our study shows that bacteria from the amphibian skin can counteract the activity of B. cinerea by regulating the plant transcriptional responses.

2.
Plant Mol Biol ; 114(3): 39, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615069

RESUMO

Plants and microorganisms establish beneficial associations that can improve their development and growth. Recently, it has been demonstrated that bacteria isolated from the skin of amphibians can contribute to plant growth and defense. However, the molecular mechanisms involved in the beneficial effect for the host are still unclear. In this work, we explored whether bacteria isolated from three tropical frogs species can contribute to plant growth. After a wide screening, we identified three bacterial strains with high biostimulant potential, capable of modifying the root structure of Arabidopsis thaliana plants. In addition, applying individual bacterial cultures to Solanum lycopersicum plants induced an increase in their growth. To understand the effect that these microorganisms have over the host plant, we analysed the transcriptomic profile of A. thaliana during the interaction with the C32I bacterium, demonstrating that the presence of the bacteria elicits a transcriptional response associated to plant hormone biosynthesis. Our results show that amphibian skin bacteria can function as biostimulants to improve agricultural crops growth and development by modifying the plant transcriptomic responses.


Assuntos
Arabidopsis , Solanum lycopersicum , Animais , Transcriptoma , Arabidopsis/genética , Solanum lycopersicum/genética , Anfíbios , Bactérias , Hormônios
3.
Front Mol Biosci ; 10: 1184200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664184

RESUMO

Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.

4.
Antibiotics (Basel) ; 12(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237769

RESUMO

The Pseudomonas aeruginosa genome can change to adapt to different ecological niches. We compared four genomes from a Mexican hospital and 59 genomes from GenBank from different niches, such as urine, sputum, and environmental. The ST analysis showed that high-risk STs (ST235, ST773, and ST27) were present in the genomes of the three niches from GenBank, and the STs of Mexican genomes (ST167, ST2731, and ST549) differed from the GenBank genomes. Phylogenetic analysis showed that the genomes were clustering according to their ST and not their niche. When analyzing the genomic content, we observed that environmental genomes had genes involved in adapting to the environment not found in the clinics and that their mechanisms of resistance were mutations in antibiotic resistance-related genes. In contrast, clinical genomes from GenBank had resistance genes, in mobile/mobilizable genetic elements in the chromosome, except for the Mexican genomes that carried them mostly in plasmids. This was related to the presence of CRISPR-Cas and anti-CRISPR; however, Mexican strains only had plasmids and CRISPR-Cas. blaOXA-488 (a variant of blaOXA50) with higher activity against carbapenems was more prevalent in sputum genomes. The virulome analysis showed that exoS was most prevalent in the genomes of urinary samples and exoU and pldA in sputum samples. This study provides evidence regarding the genetic variability among P. aeruginosa isolated from different niches.

5.
Microorganisms ; 10(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36144465

RESUMO

blaIMP and blaVIM are the most detected plasmid-encoded carbapenemase genes in Pseudomonas aeruginosa. Previous studies have reported plasmid sequences carrying blaIMP variants, except blaIMP-56. In this study, we aimed to characterize a plasmid carrying blaIMP-56 in a P. aeruginosa strain isolated from a Mexican hospital. The whole genome of P. aeruginosa strain PE52 was sequenced using Illumina Miseq 2 × 150 bp, with 5 million paired-end reads. We characterized a 27 kb plasmid (pPE52IMP) that carried blaIMP-56. The phylogenetic analysis of RepA in pPE52IMP and 33 P. aeruginosa plasmids carrying resistance genes reported in the GenBank revealed that pPE52IMP and four plasmids (pMATVIM-7, unnamed (FDAARGOS_570), pD5170990, and pMRVIM0713) were in the same clade. These closely related plasmids belonged to the MOBP11 subfamily and had similar backbones. Another plasmid (p4130-KPC) had a similar backbone to pPE52IMP; however, its RepA was truncated. In these plasmids, the resistance genes blaKPC-2, blaVIM variants, aac(6')-Ib4, blaOXA variants, and blaIMP-56 were inserted between phd and resolvase genes. This study describes a new family of plasmids carrying resistance genes, with a similar backbone, the same RepA, and belonging to the MOBP11 subfamily in P. aeruginosa. In addition, our characterized plasmid harboring blaIMP-56 (pPE52IMP) belongs to this family.

6.
Microorganisms ; 10(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208909

RESUMO

We survey here the Alphaproteobacteria, a large class encompassing physiologically diverse bacteria which are divided in several orders established since 2007. Currently, there is considerable uncertainty regarding the classification of an increasing number of marine metagenome-assembled genomes (MAGs) that remain poorly defined in their taxonomic position within Alphaproteobacteria. The traditional classification of NCBI taxonomy is increasingly complemented by the Genome Taxonomy Database (GTDB), but the two taxonomies differ considerably in the classification of several Alphaproteobacteria, especially from ocean metagenomes. We analyzed the classification of Alphaproteobacteria lineages that are most common in marine environments, using integrated approaches of phylogenomics and functional profiling of metabolic features that define their aerobic metabolism. Using protein markers such as NuoL, the largest membrane subunit of complex I, we have identified new clades of Alphaproteobacteria that are specific to marine niches with steep oxygen gradients (oxycline). These bacteria have relatives among MAGs found in anoxic strata of Lake Tanganyika and together define a lineage that is distinct from either Rhodospirillales or Sneathiellales. We characterized in particular the new 'oxycline' clade. Our analysis of Alphaproteobacteria also reveals new clues regarding the ancestry of mitochondria, which likely evolved in oxycline marine environments.

7.
Microbiol Resour Announc ; 10(33): e0060421, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410161

RESUMO

Acinetobacter junii INC8271 was isolated from a cancer patient with polymicrobial bacteremia after biliary stent placement. The complete genome sequence consisted of a chromosome of 3,530,883 bp (GC content, 38.56%) with 3,377 genes, including those encoding 74 tRNAs and 18 rRNAs, and two intact prophage sequences. No antibiotic resistance genes were detected.

8.
J Glob Antimicrob Resist ; 23: 120-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916332

RESUMO

OBJECTIVES: The aim of this study was to identify Acinetobacter spp. strains from paediatric patients, to determine their genetic relationship, to detect antibiotic resistance genes and to evaluate the role of efflux pumps in antibiotic resistance. METHODS: A total of 54 non-duplicate, non-consecutive Acinetobacter spp. isolates were collected from paediatric patients. Their genetic relationship, antibiotic resistance profile, efflux pump activity, antibiotic resistance genes and plasmid profile were determined. RESULTS: The isolates were identified as 24 Acinetobacter haemolyticus, 24 Acinetobacter calcoaceticus-baumannii (Acb) complex and 1 strain each of Acinetobacter junii, Acinetobacter radioresistens, Acinetobacter indicus, Acinetobacter lwoffii, Acinetobacter ursingii and Acinetobacter venetianus. The 24 A. haemolyticus were considered genetically unrelated. One strain was resistant to carbapenems, two to cephalosporins, two to ciprofloxacin and sixteen to aminoglycosides. The antibiotic resistance genes blaOXA-214 (29%), blaOXA-215 (4%), blaOXA-264 (8%), blaOXA-265 (29%), blaNDM-1 (4%), aac(6')-Ig (38%) and the novel variants blaOXA-575 (13%), blaTEM-229 (75%), aac(6')-Iga (4%), aac(6')-Igb (13%) and aac(6')-Igc (42%) were detected. Among 24 Acb complex, 5 were multidrug-resistant, carbapenem-resistant strains carrying blaOXA-51 and blaOXA-23; they were genetically related and had the same plasmid profile. Other species were susceptible. In some strains of A. haemolyticus and Acb complex, the role of RND efflux pumps was evidenced by a decrease in the MICs for cefotaxime, amikacin and ciprofloxacin in the presence of an efflux pump inhibitor. CONCLUSIONS: This study identified isolates of A. haemolyticus carrying new ß-lactamase variants and shows for the first time the contribution of efflux pumps to antibiotic resistance in this species.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Criança , Hospitais Pediátricos , Humanos , México
9.
Front Microbiol ; 11: 926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670207

RESUMO

Acinetobacter haemolyticus is a Gammaproteobacterium that has been involved in serious diseases frequently linked to the nosocomial environment. Most of the strains causing such infections are sensitive to a wide variety of antibiotics, but recent reports indicate that this pathogen is acquiring very efficiently carbapenem-resistance determinants like the blaNDM-1 gene, all over the world. With this work we contribute with a collection set of 31 newly sequenced nosocomial A. haemolyticus isolates. Genome analysis of these sequences and others collected from RefSeq indicates that their chromosomes are organized in 12 syntenic blocks that contain most of the core genome genes. These blocks are separated by hypervariable regions that are rich in unique gene families, but also have signals of horizontal gene transfer. Genes involved in virulence or encoding different secretion systems are located inside syntenic regions and have recombination signals. The relative order of the synthetic blocks along the A. haemolyticus chromosome can change, indicating that they have been subject to several kinds of inversions. Genomes of this microorganism show large differences in gene content even if they are in the same clade. Here we also show that A. haemolyticus has an open pan-genome.

10.
PLoS One ; 15(7): e0234684, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702006

RESUMO

OBJECTIVE: To describe the clinical features, outcomes, and molecular epidemiology of an outbreak of multidrug resistant (MDR) A. baumannii. METHODS: We performed a retrospective analysis of all MDR A. baumannii isolates recovered during an outbreak from 2011 to 2015 in a tertiary care cancer hospital. Cases were classified as colonized or infected. We determined sequence types following the Bartual scheme and plasmid profiles. RESULTS: There were 106 strains of A. baumannii isolated during the study period. Sixty-six (62.3%) were considered as infection and 40 (37.7%) as colonization. The index case, identified by molecular epidemiology, was a patient with a drain transferred from a hospital outside Mexico City. Ninety-eight additional cases had the same MultiLocus Sequence Typing (MLST) 758, of which 94 also had the same plasmid profile, two had an extra plasmid, and two had a different plasmid. The remaining seven isolates belonged to different MLSTs. Fifty-three patients (50%) died within 30 days of A. baumanniii isolation: 28 (20%) in colonized and 45 (68.2%) in those classified as infection (p<0.001). In multivariate regression analysis, clinical infection and patients with hematologic neoplasm, predicted 30-day mortality. The molecular epidemiology of this outbreak showed the threat posed by the introduction of MDR strains from other institutions in a hospital of immunosuppressed patients and highlights the importance of adhering to preventive measures, including contact isolation, when admitting patients with draining wounds who have been hospitalized in other institutions.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/mortalidade , Infecção Hospitalar/epidemiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Adulto , Idoso , Estudos de Casos e Controles , Surtos de Doenças , Resistência a Múltiplos Medicamentos/fisiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Hospitais Gerais , Humanos , Masculino , México , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus/métodos , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , Estudos Retrospectivos , Análise de Sequência de DNA/métodos , beta-Lactamases/genética
12.
Microb Drug Resist ; 25(7): 1023-1031, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31335270

RESUMO

Acinetobacter calcoaceticus-baumannii complex isolates have been frequently associated with hospital and community infections, with A. baumannii being the most common. Other Acinetobacter spp. not belonging to this complex also cause infections in hospital settings, and the incidence has increased over the past few years. Some species of the Acinetobacter genus possess a great diversity of antibiotic resistance mechanisms, such as efflux pumps, porins, and resistance genes that can be acquired and disseminated by mobilizable genetic elements. By means of whole-genome sequencing, we describe in the clinical Acinetobacter haemolyticus strain AN54 different mechanisms of resistance that involve blaOXA-265, blaNDM-1, aphA6, aac(6')-Ig, and a resistance-nodulation-cell division-type efflux pump. This strain carries six plasmids, of which the plasmid pAhaeAN54e contains blaNDM-1 in a Tn125-like transposon that is truncated at the 3' end. This strain also has an insertion sequence IS91 and seven genes encoding hypothetical proteins. The pAhaeAN54e plasmid is nontypable and different from other plasmids carrying blaNDM-1 that have been reported in Mexico and other countries. The presence of these kinds of plasmids in an opportunistic pathogen such as A. haemolyticus highlights the role that these plasmids play in the dissemination of antibiotic resistance genes, especially against carbapenems, in Mexican hospitals.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , beta-Lactamases/genética , Acinetobacter/efeitos dos fármacos , Infecções por Acinetobacter/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Criança , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Masculino , México , Testes de Sensibilidade Microbiana/métodos , Sequenciamento Completo do Genoma/métodos
13.
Front Microbiol ; 10: 910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114559

RESUMO

The bacterial genus Rhizobium comprises diverse symbiotic nitrogen-fixing species associated with the roots of plants in the Leguminosae family. Multiple genomic clusters defined by whole genome comparisons occur within Rhizobium, but their equivalence to species is controversial. In this study we investigated such genomic clusters to ascertain their significance in a species phylogeny context. Phylogenomic inferences based on complete sets of ribosomal proteins and stringent core genome markers revealed the main lineages of Rhizobium. The clades corresponding to R. etli and R. leguminosarum species show several genomic clusters with average genomic nucleotide identities (ANI > 95%), and a continuum of divergent strains, respectively. They were found to be inversely correlated with the genetic distance estimated from concatenated ribosomal proteins. We uncovered evidence of a Rhizobium pangenome that was greatly expanded, both in its chromosomes and plasmids. Despite the variability of extra-chromosomal elements, our genomic comparisons revealed only a few chromid and plasmid families. The presence/absence profile of genes in the complete Rhizobium genomes agreed with the phylogenomic pattern of species divergence. Symbiotic genes were distributed according to the principal phylogenomic Rhizobium clades but did not resolve genome clusters within the clades. We distinguished some types of symbiotic plasmids within Rhizobium that displayed different rates of synonymous nucleotide substitutions in comparison to chromosomal genes. Symbiotic plasmids may have been repeatedly transferred horizontally between strains and species, in the process displacing and substituting pre-existing symbiotic plasmids. In summary, the results indicate that Rhizobium genomic clusters, as defined by whole genomic identities, might be part of a continuous process of evolutionary divergence that includes the core and the extrachromosomal elements leading to species formation.

14.
Cell Rep ; 22(4): 1067-1078, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386127

RESUMO

The biological roles of the three natural F1FO-ATPase inhibitors, ε, ζ, and IF1, on cell physiology remain controversial. The ζ subunit is a useful model for deletion studies since it mimics mitochondrial IF1, but in the F1FO-ATPase of Paracoccus denitrificans (PdF1FO), it is a monogenic and supernumerary subunit. Here, we constructed a P. denitrificans 1222 derivative (PdΔζ) with a deleted ζ gene to determine its role in cell growth and bioenergetics. The results show that the lack of ζ in vivo strongly restricts respiratory P. denitrificans growth, and this is restored by complementation in trans with an exogenous ζ gene. Removal of ζ increased the coupled PdF1FO-ATPase activity without affecting the PdF1FO-ATP synthase turnover, and the latter was not affected at all by ζ reconstitution in vitro. Therefore, ζ works as a unidirectional pawl-ratchet inhibitor of the PdF1FO-ATPase nanomotor favoring the ATP synthase turnover to improve respiratory cell growth and bioenergetics.


Assuntos
Transporte de Íons/genética , Mitocôndrias/metabolismo , Paracoccus denitrificans/crescimento & desenvolvimento , Subunidades Proteicas/genética
15.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030443

RESUMO

The molecular mechanisms underlying the biodegradation of N-methylpyrrolidone (NMP), a widely used industrial solvent that produces skin irritation in humans and is teratogenic in rats, are unknown. Alicycliphilus sp. strain BQ1 degrades NMP. By studying a transposon-tagged mutant unable to degrade NMP, we identified a six-gene cluster (nmpABCDEF) that is transcribed as a polycistronic mRNA and encodes enzymes involved in NMP biodegradation. nmpA and the transposon-affected gene nmpB encode an N-methylhydantoin amidohydrolase that transforms NMP to γ-N-methylaminobutyric acid; this is metabolized by an amino acid oxidase (NMPC), either by demethylation to produce γ-aminobutyric acid (GABA) or by deamination to produce succinate semialdehyde (SSA). If GABA is produced, the activity of a GABA aminotransferase (GABA-AT), not encoded in the nmp gene cluster, is needed to generate SSA. SSA is transformed by a succinate semialdehyde dehydrogenase (SSDH) (NMPF) to succinate, which enters the Krebs cycle. The abilities to consume NMP and to utilize it for growth were complemented in the transposon-tagged mutant by use of the nmpABCD genes. Similarly, Escherichia coli MG1655, which has two SSDHs but is unable to grow in NMP, acquired these abilities after functional complementation with these genes. In wild-type (wt) BQ1 cells growing in NMP, GABA was not detected, but SSA was present at double the amount found in cells growing in Luria-Bertani medium (LB), suggesting that GABA is not an intermediate in this pathway. Moreover, E. coli GABA-AT deletion mutants complemented with nmpABCD genes retained the ability to grow in NMP, supporting the possibility that γ-N-methylaminobutyric acid is deaminated to SSA instead of being demethylated to GABA.IMPORTANCEN-Methylpyrrolidone is a cyclic amide reported to be biodegradable. However, the metabolic pathway and enzymatic activities for degrading NMP are unknown. By developing molecular biology techniques for Alicycliphilus sp. strain BQ1, an environmental bacterium able to grow in NMP, we identified a six-gene cluster encoding enzymatic activities involved in NMP degradation. These findings set the basis for the study of new enzymatic activities and for the development of biotechnological processes with potential applications in bioremediation.


Assuntos
Comamonadaceae/genética , Genes Bacterianos/fisiologia , Família Multigênica/fisiologia , Pirrolidinonas/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comamonadaceae/metabolismo , Redes e Vias Metabólicas
16.
Genome Announc ; 5(36)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883144

RESUMO

In this study, we present the complete genome sequence of a blaOXA-58-producing Acinetobacter baumannii strain, sampled from a Mexican hospital and not related to the international clones.

17.
Genome Announc ; 5(30)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751391

RESUMO

We present here the high-quality complete genome sequences of eight strains of Rhizobium-nodulating Phaseolus vulgaris Comparative analyses showed that some of them belonged to different genomic and evolutionary lineages with common symbiotic properties. Two novel symbiotic plasmids (pSyms) with P. vulgaris specificity are reported here.

18.
Genome Announc ; 5(11)2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302777

RESUMO

The whole-genome sequences of three strains of Rhizobium gallicum reported here support the concept that the distinct nodulation host ranges displayed by the symbiovars gallicum and phaseoli can be largely explained by different symbiotic plasmids.

19.
J Bacteriol ; 199(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167520

RESUMO

Bacterial cell division is a complex process that relies on a multiprotein complex composed of a core of widely conserved and generally essential proteins and on accessory proteins that vary in number and identity in different bacteria. The assembly of this complex and, particularly, the initiation of constriction are regulated processes that have come under intensive study. In this work, we characterize the function of DipI, a protein conserved in Alphaproteobacteria and Betaproteobacteria that is essential in Caulobacter crescentus Our results show that DipI is a periplasmic protein that is recruited late to the division site and that it is required for the initiation of constriction. The recruitment of the conserved cell division proteins is not affected by the absence of DipI, but localization of DipI to the division site occurs only after a mature divisome has formed. Yeast two-hybrid analysis showed that DipI strongly interacts with the FtsQLB complex, which has been recently implicated in regulating constriction initiation. A possible role of DipI in this process is discussed.IMPORTANCE Bacterial cell division is a complex process for which most bacterial cells assemble a multiprotein complex that consists of conserved proteins and of accessory proteins that differ among bacterial groups. In this work, we describe a new cell division protein (DipI) present only in a group of bacteria but essential in Caulobacter crescentus Cells devoid of DipI cannot constrict. Although a mature divisome is required for DipI recruitment, DipI is not needed for recruiting other division proteins. These results, together with the interaction of DipI with a protein complex that has been suggested to regulate cell wall synthesis during division, suggest that DipI may be part of the regulatory mechanism that controls constriction initiation.


Assuntos
Caulobacter crescentus/metabolismo , Divisão Celular/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica/fisiologia
20.
Am J Infect Control ; 45(3): 260-266, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852447

RESUMO

BACKGROUND: Enterococcus faecium causes bloodstream infection (BSI) in patients with hematologic malignancies (HMs). We studied the clinical features and outcomes of patients with HM with vancomycin-sensitive E faecium (VSE) and vancomycin-resistant E faecium (VRE) BSI and determined the genetic relatedness of isolates and circumstances associated with the upsurge of E faecium BSI. METHODS: Case-control study of patients with HM and E faecium-positive blood culture from January 2008-December 2012; cases were patients with VRE and controls were VSE isolates. The strains were tested for Van genes by polymerase chain reaction amplification and we performed pulsed-field gel electrophoresis to determine genetic relatedness. RESULTS: Fifty-eight episodes of E faecium BSI occurred: 35 sensitive and 23 resistant to vancomycin. Mortality was 46% and 57%, attributable 17% and 40%, respectively. Early stage HM was associated with VSE (P = .044), whereas an episode of BSI within the 3 months before the event (P = .039), prophylactic antibiotics (P = .013), and vancomycin therapy during the previous 3 months (P = .001) was associated with VRE. The VanA gene was identified in 97% of isolates studied. E faecium isolates were not clonal. CONCLUSIONS: E faecium BSI was associated with high mortality. This outbreak of VRE was not clonal; it was associated with antibiotic-use pressure and highly myelosuppressive chemotherapy.


Assuntos
Surtos de Doenças , Enterococcus faecium/isolamento & purificação , Infecções por Bactérias Gram-Positivas/epidemiologia , Neoplasias Hematológicas/complicações , Sepse/epidemiologia , Enterococos Resistentes à Vancomicina/isolamento & purificação , Adolescente , Adulto , Estudos de Casos e Controles , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Enterococcus faecium/classificação , Enterococcus faecium/genética , Feminino , Variação Genética , Genótipo , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Tipagem Molecular , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Sepse/microbiologia , Análise de Sobrevida , Enterococos Resistentes à Vancomicina/classificação , Enterococos Resistentes à Vancomicina/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...